北京大学物理学院量子材料科学中心、电子显微镜实验室高鹏教授课题组与合作者揭示了氮化物异质结界面声子输运机制。2022年2月18日,相关成果以《原子尺度探测氮化物半导体异质结界面声子桥》(Atomic-scale probing of heterointerface phonon bridges in nitride semiconductor)为题,在线发表于《美国国家科学院院刊》(Proceedings of the National Academy of Sciences of the United States of America)。

 

当前,信息技术的高速发展对半导体器件的热管理提出了更高的要求:一方面需要使用更好的散热材料(如石墨烯、金刚石等),另一方面需要降低接触界面热阻。对于小尺寸的高功率器件而言,界面的导热能力实际上已经成为制约器件性能提升的瓶颈,因此,研究其界面导热机制尤其重要。在半导体器件中,界面热导主要是由异质结界面附近的几个原子层产生的界面声子决定的。但目前人们对界面声子如何影响界面热导知之甚少,主要原因是缺乏有效实验测量界面热或声子的手段。

 

  1. AlN/Si异质结界面处的原子分辨图;(b) AlN/Si异质结界面的EELS谱;(c) AlN/Si和AlN/Al异质结四种不同界面模式的声子态密度分布及对界面热导的贡献

     

近来,高鹏教授课题组,发展了兼具空间分辨和动量分辨能力的四维电子能量损失谱技术(Nature Communications 2021,12, 1179; 发明专利:ZL202011448013.7),并展示了可应用于异质结界面声子色散的测量(Nature 2021, 559, 399)。最近,他们和清华大学、南方科技大学等合作,利用该谱学方法测量了第三代半导体氮化铝(AlN)与硅(Si)衬底、金属铝(Al)电极等界面的晶格动力学行为,并探索了不同界面的声子传输行为及其对界面热导的贡献。

 

联合研究团队发现AlN/Si和AlN/Al的界面声子模式迥然不同,从而导致界面热导数倍的差异。通常,界面声子可以分为四类:扩展模式、局域模式、部分扩展模式和孤立模式。其中,扩展模式和局域模式与界面两侧的体态声子都有很强的关联,使得一侧的声子通过弹性/非弹性散射穿过界面到达另一侧,充当连接两侧体态声子的桥梁,从而有助于提升界面热导;而部分扩展模式和孤立模式对界面热导贡献很小。联合研究团队首先在AlN/Si异质结界面上观测到了界面模式具有明显的桥效应:界面存在原子尺度局域的声子模式,与界面两侧AlN和Si的不同能量的体声子都能发生非弹性散射从而交换能量;此外,也观察到了明显的界面扩展模式。这两种模式都能有效促进界面热量的传输。而在AlN/Al界面,并没有观察到明显的由局域模式或扩展模式构成的声子桥,其界面声子模式主要为部分扩展模式,对热量的传输效率较低。这些结果解释了为什么AlN/Al的界面热导要远小于AlN/Si。该工作深化了对界面声子传输和热输运的理解,尤其为基于氮化物的高电子迁移率晶体管和大功率发光二极管等高功率半导体器件的热管理提供了有价值的信息。

 

来源:物理学院北京大学新闻网

一颗芯片的制造工艺非常复杂,需经过几千道工序,加工的每个阶段都面临难点。欢迎加入艾邦半导体产业微信群:

长按识别二维码关注公众号,点击下方菜单栏左侧“微信群”,申请加入群聊

作者 gan, lanjie