SiC功率元器件具有优于Si功率元器件的更高耐压、更低导通电阻、可更高速工作,且可在更高温条件下工作。阅读本文前,欢迎识别二维码加入产业链微信群及通讯录。
SiC是由硅(Si)和碳(C)组成的化合物半导体材料。其结合力非常强,在热、化学、机械方面都非常稳定。利用SiC可以大幅度降低能量损耗,这是SiC很大的优点,接下来希望再了解一下低阻值、高速工作、高温工作等SiC的特征所带来的优势。
通过与Si的比较来进行介绍。”低阻值”可以单纯解释为减少损耗,但阻值相同的话就可以缩小元件(芯片)的面积。应对大功率时,有时会使用将多个晶体管和二极管一体化的功率模块。例如,SiC功率模块的尺寸可达到仅为Si的1/10左右。
关于“高速工作”,通过提高开关频率,变压器、线圈、电容器等周边元件的体积可以更小。实际上有能做到原有1/10左右的例子。
“高温工作”是指容许在更高温度下的工作,可以简化散热器等冷却机构。
如上所述,可使用SiC来改进效率或应对更大功率。而以现状的电力情况来说,通过使用SiC可实现显著小型化也是SiC的一大优点。不仅直接节能,与放置场所和运输等间接节能相关的小型化也是重要课题之一。
通过将SiC应用到功率元器件上,实现以往Si功率元器件无法实现的低损耗功率转换。不难发现这是SiC使用到功率元器件上的一大理由。其背景是为了促进解决全球节能课题。
以低功率DC/DC转换器为例,随着移动技术的发展,超过90 %的转换效率是很正常的,然而高电压、大电流的AC/DC转换器的效率还存在改善空间。众所周知,以EU为主的相关节能指令强烈要求电气/电子设备实现包括消减待机功耗在内的节能目标。
在这种背景下,削减功率转换时产生的能耗是当务之急。不用说,必须将超过Si极限的物质应用于功率元器件。
例如,利用SiC功率元器件可以比IGBT的开关损耗降低85%。如该例所示,毫无疑问,SiC功率元器件将成为能源问题的一大解决方案。
SiC比Si的绝缘击穿场强高约10倍,可耐600V~数千V的高压。此时,与Si元器件相比,可提高杂质浓度,且可使膜厚的漂移层变薄。高耐压功率元器件的电阻成分大多是漂移层的电阻,阻值与漂移层的厚度成比例增加。因为SiC的漂移层可以变薄,所以可制作单位面积的导通电阻非常低的高耐压元器件。理论上,只要耐压相同,与Si相比,SiC的单位面积漂移层电阻可低至1/300。
Si 功率元器件为改善高耐压化产生的导通电阻増大问题,主要使用IGBT(绝缘栅极双极晶体管)等少数载流子元器件(双极元器件)。但因为开关损耗大而具有发热问题,实现高频驱动存在界限。由于SiC能使肖特基势垒二极管和MOSFET等高速多数载流子元器件的耐压更高,因此能够同时实现 “高耐压”、“低导通电阻”、“高速”。
此时,带隙是Si的约3倍,能够在更高温度下工作。现在,受封装耐热性的制约可保证150℃~175℃的工作温度,但随着封装技术的发展将能达到200℃以上。
来源:https://www.ewsemi.com/6073
为加快产业上下游企业交流,艾邦建有功率半导体产业链交流,目前已有英飞凌、华润微电子、比亚迪、中车、芯能半导体、士兰微、天岳先进、翠展微、西安卫光、博敏电子、华清电子等产业链上下游企业加入,欢迎识别二维码加入产业链微信群及通讯录。
展出2万平米、1,000个摊位、500多家展商、50,000名专业观众;汇聚IGBT产业链上游陶瓷衬板(DBC/AMB)、散热器、焊料、烧结银等材料,超声波焊接、超声波检测、焊接等设备;精密陶瓷、电子陶瓷、陶瓷基板、陶瓷封装、LTCC/HTCC/MLCC加工产业链等产业链上下游企业!
长按识别二维码,关注“艾邦陶瓷展”公众号,底部菜单进行观众预登记。
※功率器件(IGBT、SiC)IGBT、半导体封装、光通信,通讯设备、消费电子、电子陶瓷、元器件等企业可享受VIP参观福利(免费午餐、饮用水、赠送会刊);
原文始发于微信公众号(艾邦半导体网):什么是SiC功率元器件