无可否认,不论是半导体技术还是其产业本身,都已经成为所有市场中最大的产业之一。全球媒体、企业和政府也纷纷把目光投向了半导体工厂的下一个建设地。而每一次的技术革新都会进一步增加对智能设备的需求,半导体芯片的重要性也随之变得愈加突显。然而,人们对半导体的变迁史和崛起却未必同样熟悉。从家用电器到智能手机,半导体是驱动电子设备不可或缺的元件。在阅读本文之前,欢迎识别二维码申请加入半导体封装产业链微信群。

计算机、晶体管的问世与半导体

本期文章就来追溯一下这一核心元件的起源,了解一下它是如何成为我们日常生活的重要组成部分的。以下六篇文章将详细介绍半导体的特征及工艺:“计算机与晶体管(Computers and Transistors)”、“工艺与氧化(Process and Oxidation)”、“光刻(Photolithography)”、“蚀刻(Etching)”、“沉积(Deposition)”和“金属布线(Metal Wiring)”。这些文章着重于说明技术之间的相关性。

人类的欲望: 计算机的诞生

从家庭到职场,人类一直在探索可以将各种场景中的日常活动简单化的方案。这也让技术设备的不断升级成了创新思想家们(Innovative thinker)一直关注的焦点。人类的这种欲望促使只能做简单运算的机器不断升级为更实用、更精密的设备。

从古至今,人类从未停止过发明机器的脚步。1871年查尔斯·巴贝奇(Charles Babbage)的分析机(Analytical Engine)就是最具代表性的实验创举。只要在分析机(Analytical Engine)插入名为穿孔卡片(Punched card/Punch card)的输入信息载体,就可以进行任何数学运算:分析机读取穿孔卡片的指令后,反复进行各种数学运算,最后在机器的另一头输出其结果值。就跟红白机(Famicom)的运作原理一样,想玩什么游戏,就插什么游戏卡。

虽然分析机没有最终完成,却给我们带来了启发。分析机具备了现代计算机的所有设计思想:穿孔卡片和输出设备相当于现在的存储器。所以说分析机就是CPU*的雏形。

查尔斯·巴贝奇(Charles Babbage)设计的分析机是用蒸汽作为动力源的。简言之,就是一台用金属和木材制作存储器和CPU,并用蒸汽机驱动的计算机。可见,从那时起,人们已经开始形成有关计算机运作原理的初步思想了,但没有把计算机与“电路”挂钩。那么,就让我们来看看电路是如何成为现代计算机核心元件的吧。当时,分析机的出现并没有带来石破天惊的震撼,也没有被广泛接受,但如今,以电路为核心的计算机却完全颠覆了世界。

电控计算机

以电路为基础的设备,比蒸汽、人力和水力驱动更先进。因为它可以更快、更高效地控制信号。以蒸汽驱动为例,蒸汽必须要达到一定水平才可以运转机器,除了反应速度慢之外,高压输送更需要使用厚实的输送管,大大降低了功效。为了更形象地说明,假设我们要让一扇门的开关受粗绳拉动的控制:以蒸汽为动力源的话,我们需要拉动绳索以打开锅炉阀门并驱动蒸汽,随后更要等上一段时间,待蒸汽到达能推开门的压力强度;然而,如果以电力为动力,只需一个按钮和发动机就够了,机器的体积变小了,还能大大提高功效和反应速度。
计算机、晶体管的问世与半导体
图1:  蒸汽驱动自动门(左)& 电驱动自动门(右)

电的发现让人类用电控制计算机的想法开始萌生,并成为了当时的一大主流思想。很多科学家开始尝试用电力来驱动计算机,其中电子数字积分计算机(ENIAC,Electronic Numerical Integrator and Computer)就是这种尝试的一大成果。与用齿轮和蒸汽动力来驱动的分析机不同,ENIAC采用了真空电子管和各种电路来驱动计算机。从“真空电子管”这一名称就不难看出,ENIAC的动力源正是电力。

计算机、晶体管的问世与半导体
图2:  电子数字积分计算机(ENIAC)

ENIAC的体积庞大,足以占据一个房间的面积。如此巨型的计算机,耗电量也达到了170kW,与同时使用170台微波炉的耗电量相当。当然,不愧于其庞大的体积和耗电量,ENIAC解决了当时的不少问题。相比咯吱作响“慢悠悠”运作的齿轮,采用17万根真空电子管的ENIAC也有着算是“破天荒”的运算速度。另外,ENIAC为氢弹的发明和仿真方法学(Simulation Methodology)的创立也做出了不可磨灭的贡献。

然而,众所周知,ENIAC的性能其实还赶不上20世纪90年代的手提电脑。为了驱动一台低性能的电子计算机,功耗竟等同于同时运作170台微波炉,简直难以置信。而且,如此庞大的身躯,谈何普及?退一万步说,就是把ENIAC的体积缩小到其十分之一,也无济于事。毋庸置疑,相比上一代的蒸汽驱动设备,ENIAC在性能方面的确进步了不少。但想将其普及到“人手一台”,在体积和效率方面还有很长一段路要走。显然,ENIAC无法为人类创造其预想中的未来。世界呼唤进一步的创新,晶体管应运而生。

晶体管的问世

上文说到ENIAC采用了真空电子管,那这些电子元件的作用是什么呢?当时,人们已经明白只要能控制信号就可以制成运算机器。上文谈到的蒸汽自动门案例就是最好的证明:用粗绳(工具)控制蒸汽(信号),并设置了“只要拉绳就开门”的指令。电驱动自动门作为蒸汽驱动的升级版,其运作原理也是一样,利用开关来控制流入引擎的电流,以此来完成对门的操作。

归根到底,其实计算机就是在蒸汽自动门的基础上,增加了大量的输入和输出,然后在其内部安装数千个输送管,连接形成各种复杂的逻辑结构。蒸汽自动门只有开门和关门的作用,但试想一下,在此基础上,还可以进一步延伸,比如用一根粗绳同时开两扇门,或设计一款人站在门口时不会关闭的安全门等。以此类推,计算机就是在蒸汽自动门的基础上,不断叠加升级的功能。“粗绳”和“蒸汽输送管”就相当于真空电子管。
计算机、晶体管的问世与半导体
图3:  一个简单操作就可以同时打开几扇门的蒸汽驱动自动门 & 经两人同意才可以打开的自动门

如果想进一步升级“蒸汽计算机”的功能,改善整体性能,该怎么办?我们可以增加蒸汽管数量,形成更多的功能,或安装压力更大、温度更高的锅炉,提高反应速度等。原理虽说很简单,但现实操作起来却谈何容易?

蒸汽管本身就很大,即使只添加一条管道,增加的体积也相当可观;想提高锅炉的性能,不仅需要大量的能源,危险性也会大大增加。当时,真空电子管是人类找到的最好的替代方案。它由电力驱动,没有像高压锅炉爆炸那样的危险,且运作速度也达到了每秒数十次。当然,真空电子管的缺点就是庞大的耗电量,因此个别真空电子管会经常损坏。为了制造更好的计算机,就要寻找比真空电子管更胜一筹的元件。

1947年,晶体管诞生了。晶体管可以用微小的电量控制大量电流的流动,可谓是颠覆性的创造。科学家发现,只要使用以下两种半导体元件,就可以轻而易举地连接或断开信号(参见下图)。尽管其结构有些复杂,但原理却跟用粗绳控制蒸汽输送的道理一样。在晶体管诞生的那一年,人类发明了一款名叫 BJT*的产品,一直沿用至今。当然,晶体管的问世,也让半导体这一材料开始映入人们的眼帘。
计算机、晶体管的问世与半导体
图4:  晶体管的结构:使用N型和P型两种半导体。

所有人的半导体:MOSFET的创新与制造技术

1959年,贝尔研究所的研究员默罕默德·阿塔拉(Mohamed M. Atalla)博士和姜大元(Dawon Kahang)博士共同发明了一种金属氧化物半导体场效应晶体管(MOSFET,Metal–Oxide–Semiconductor Field-Effect Transistor)。两人在硅晶圆上形成了两种半导体层,并在此之上堆叠金属制成了平面型的晶体管。MOSFET的运作原理与上一代晶体管虽有些不同,但使用方法却大同小异,其最大亮点就是生产率。
计算机、晶体管的问世与半导体
图5:  姜大元博士的金属氧化物半导体场效应晶体管(MOSFET)模型结构

得益于MOSFET的平面式结构,我们可以在硅晶圆上同时制造出好几个MOSFET。这意味着,只要把单个MOSFET的大小控制好,在相同面积的晶圆上可以多制作数十倍的晶体管,还可以直接把单个的MOSFET连接在一起。假设采用BJT晶体管制作CPU,即使BJT的制作过程再高效,想把数亿根BJT连接成CPU,仍然需要重复焊接以及将其固定在基板上的过程。相反,MOSFET可以一次性达到数亿根晶体管结合好的状态。正因为如此,“在硅晶圆上形成的MOSFET集合”在物理学上被“剥夺”了“半导体”的头衔。

接下来,我们将一探MOSFET的制作过程。我们常说,建造一个半导体工厂需要投数万亿(韩元)。出乎意料的是,如此的高投入其实就是为了以低成本生产MOSFET。那么半导体工厂是如何采用曝光(Exposure)、蚀刻(Etching)、沉积(Deposition)等半导体领域最常见的工艺来制作“廉价”的MOSFET的呢?让我们来一探究竟吧!

通过本篇文章我希望读者们能分清技术研发的目的与工具:科学家的目的是发明计算机,可以传递信号的电流是工具。MOSFET是目前以电力为基础的最顶级的“工具”,这是因为其制造工艺可以实现晶体管的量产。希望读者们能在接下来的内容中,想一想半导体的制造技术是如何降低半导体成本,进而为计算机与智能手机的普及奠定基础的。

来源:SK海力士 
原文链接:https://news.skhynix.com.cn/semiconductor-front-end-process-episode-1/

半导体成为人们日常生活最重要的组成部分。为促进行业发展,互通有无,欢迎芯片设计、晶圆制造、装备、材料等产业链上下游加入艾邦半导体封装产业链交流群。

计算机、晶体管的问世与半导体

推荐阅读:

热压键合(TCB)与英特尔的先进封装

先进封装TSV硅通孔技术介绍

先进封装之混合键合(Hybrid Bonding)的前世今生

先进封装之面板级封装(Panel Level Package,PLP)

半导体封装之“盘”它一条国产QFN封测线!

TCB热压键合量产过程中如何控制贴片质量及优化手段

什么是摩尔定律,为什么人们说它已经死了?

先进封装之热压键合(TCB)设备细节详述


推荐活动:【邀请函】第六届陶瓷基板及封装产业高峰论坛(6月30日 华东)

第六届陶瓷基板及封装产业高峰论坛

6月30日

华东


序号

暂定议题

拟邀请企业

1

陶瓷基板在IGBT功率器件封装中的应用和发展

功率器件企业/高校研究所

2

功率器件封装用陶瓷基板的金属化工艺研究

陶瓷基板企业/高校研究所

3

基于陶瓷基板的三维系统级封装技术及发展

陶瓷基板企业/高校研究所

4

Si3N4-AMB覆铜基板的关键技术

陶瓷基板企业/高校研究所

5

直接覆铝(DBA)陶瓷基板的关键制备技术及产业化

陶瓷基板企业/高校研究所

6

高温共烧陶瓷(HTCC)技术的发展与应用

HTCC企业

7

LTCC基板关键工艺技术

LTCC企业

8

高导热氮化硅陶瓷基板研究现状

氮化硅基板企业

9

氮化硅陶瓷粉体的制备技术

氮化硅粉体企业

10

大尺寸氧化铝基板的制备技术及应用

氧化铝基板企业

11

高强度高导热氮化铝陶瓷基板的制备及应用

氮化铝基板企业

12

高品级氮化铝粉末制备方法及研究进展

氮化铝粉体企业

13

陶瓷封装基板的电子浆料匹配共烧技术

浆料企业

14

关键活化金属焊料在AMB陶瓷覆铜板的应用介绍

焊料企业

15

陶瓷基板薄膜电路PVD镀膜工艺和解决方案

PVD设备企业

16

陶瓷基板的激光加工解决方案

激光企业

17

高性能陶瓷基板流延成形技术

流延设备企业

18

多层共烧陶瓷基板叠片工艺及关键技术

叠片机企业

19

陶瓷基板烧结工艺研究

烧结设备企业

20

陶瓷基板缺陷高速高精度检测方案

视觉检测设备

更多议题征集中,演讲赞助意向,请联系周小姐:18320865613(微信同电话号码)

报名方式:

方式1:加微信


龙小姐:18318676293(同微信)
邮箱:ab036@aibang.com

计算机、晶体管的问世与半导体


方式2:长按二维码扫码在线登记报名


计算机、晶体管的问世与半导体

或者复制网址到浏览器后,微信注册报名:
https://www.aibang360.com/m/100144?ref=196271

点击阅读原文,即可在线报名

原文始发于微信公众号(艾邦半导体网):计算机、晶体管的问世与半导体

一颗芯片的制造工艺非常复杂,需经过几千道工序,加工的每个阶段都面临难点。欢迎加入艾邦半导体产业微信群:

长按识别二维码关注公众号,点击下方菜单栏左侧“微信群”,申请加入群聊

作者 ab